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The simplest Ginzburg-Landau model with conservation law is investigated. 
The initial state is specified by an inhomogeneous profile of the chemical poten- 
tial associated with the conserved quantity, that is, the mean spin. It is shown 
that the mean spin satisfies a nonlinear diffusion equation in the hydrodynamic 
limit. The proof is based on the nice, parabolic structure of the model. A stan- 
dard perturbation technique is used. 

KEY W O R D S :  Hydrodynamic limit; local equilibrium distributions; 
Ginzburg-Landau models; parabolic estimates. 

1. I N T R O D U C T I O N  

The goal of the procedure of the so-called hydrodynamic scaling limit is to 
derive the evolution equations of nonequilibrium thermodynamics from 
microscopic laws. A mathematical  formulation of the problem goes back to 
Morrey (23) and Dobrushin. (s/ (See also Ref. 6 for an exposition of the 
mathematical  and some of the physical ideas. The early results of Refs. 3, 9, 
21, and 27-29 are also of some historical interest.) The basic concept of this 
approach, the principle of local equilibrium, expresses a fairly deep, local 
ergodic property of the underlying microscopic dynamics. That  is the 
reason why it has only been verified for some very special, more or less 
explicitly solvable models. In this paper  we investigate a one-dimensional 
Ginzburg-Landau model with conservation law; see Refs. 15, 16, and 32 
for a mathematical  and physical interpretation of the model, and also for 
some references to the physics literature. This model is general enough in 
the sense that it contains a functional parameter.  On the other hand, there 
is only one conservation law, and the conserved quantity satisfies a closed 
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equation; the currents due to the rapidly oscillating, nonconservative quan- 
tities are represented by a space-time white noise, which makes life much 
easier. Let us remark that the equations for the conservative quantities of 
the mechanical models of Refs. 3 and 10 do close up only in the limit; 
therefore some rather explicit calculations are needed there. 

We investigate an infinite system S of continuous spins S(x) sitting at 
the points of the one-dimensional integer lattice 77. Configurations of the 
system are real sequences of type S: 7/--+ R, where R denotes the real line. 
The formal Hamilton function of the model is supposed to be of the type 

H(S)= ~ {v(S(x))+�89 1)-S(x)] 2} (1.1) 
x ~ Z  

where v >~ 0 is a constant, while V: R ~ R is a convex self-potential. The 
temporal evolution of the system is given by an infinite system of stochastic 
differential equations 

dS(t, x) = �89169 + 1, s) - 2DH(x, S) + ~)H(x - 1, S)]  dt 

+ w( dt, x ) - w( dt, x - 1 ) ,  x e Z (1.2) 

with initial condition S(0, x ) =  a(x), where w(t, x), t >~ O, x e 77 is a family 
of independent, standard Wiener processes, and 

if)H= •H(x, S ) =  V ' ( S ( x ) ) - v [ S ( x  + 1 ) - 2 S ( x ) +  S ( x -  1)] (1.3) 

denotes the gradient (functional derivative) of H, and V' is the derivative 
of V. 

Throughout  this paper we are assuming that V has three continuous 
derivatives, and we have some constants cr and L, 0 ~< e < 1, such that 

and 

1 - ~  ~< V"(x) ~< 1 + cr (1.4) 

] V " ( x ) I ~ L  for all x e R  (1.5) 

The meaning of (1.4) is simply V(x)=x2/2+o~U(x), with IU"(x)l ~< 1. At 
the most crucial step of the proof a perturbative treatment will be used; 
there we also need that ~ is less than a universal constant c% to be 
estimated in Lemma 6. We are interested in the asymptotic behavior of the 
rescaled spin field 

S~(t, q~)= f (p(x) S(t/e 2, Ix /e l )  dx (1.6) 
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as the scaling parameter e > 0 goes to zero. Here ~o is a smooth function, 
and [u]  denotes the integer part of u e R. 

From a purely mathematical point of view this problem is a very 
strange one. We have 

dS~(t, ~o) = ~ f (& ~o(x)) V'(&(t, x)) dx dt 

-- �89 I (d2cp(x)) S~(t, x) dx dt 

- f (V~(0(x)) w~(dt, x) dx (1.7) 

w e r e  S~(t, x)= S(t/G 2, [X/G]), (.Oe(t , X)~-Gw(t/G 2, [X/t]),  and 

v~ o(x)  = G-1 [~o(x + G) - ,p(x)] 

d ~ c p ( x )  = e -  2 [cp (x  + ~) - 2(p(x) + q0(x - G)] 
(1.8) 

are te lattice approximations of step size e to the differential operators 8/8x 
and 32/8x 2, respectively. Te first observation is certainly that the martingale 
part of dS~ vanishes together with the second integral as e goes to zero. 
Thus, one might be led to the conclusion that S~(t, (p) converges to a deter- 
ministic limit: 

&(t, q,)-~--2~ p(t, ~o)= ; ~o(x) p(t, x) & (1.9) 

and the limiting density p satisfies a nonlinear diffusion equation 

8P- I  S~ID(P)~x 2 (1.10) 

with diffusion coefficient D(p)= V'(p); see Refs. 13 and 26 for the com- 
pletely deterministic case when v = 0. We shall see, however, that this con- 
clusion is false. For  some randomly selected initial configurations we have, 
indeed, a deterministic limit as described above, but D(p)-# V"(p). The 
naive argument fails because of the singular behavior of A~ V'(S). An inter- 
play between the singular drift and the vanishing stochastic term results in 
a correction to the diffusion coefficient D of (l.10). The term (vG2/2)d~ 
plays a distinguished role. Although there is no fourth derivative in the 
limiting equation (1.10), the modified diffusion coefficient also depends on 
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v. On the other hand, if we replace the factor ve2/2 by v/2, then the limit is 
still a deterministic one, and the limiting density is governed by 

Op l ~x[V,,(p)Op] V634p 
(?t = 2 -~x 20x 4 

Moreover, if we replace the factor v82/2 by v/2, and w, by e--l/2ws, then we 
are in a lattice approximation situation again. If v > 0 ,  then some 
calculations by Funaki (17) suggest that in this case S~ has a stochastic limit 
for all initial configurations satisfying some minimal integrability con- 
ditions, and the limiting field Y turns out to be the solution to the 
stochastic partial differential equation 

1 0 2 v ~ 4 y  a 
d r =   ?Vx v'( Y) dt- T x dt w(dt, &) (1.11) 

where w(dt, dx) is a space-time white noise. If v = 0 and V'(x) = x, then all 
solutions to (1.11) are in fact generalized fields. Finally, as announced by 
Funaki, (17) Eq. (1.11 ), like Eq. (1.2), admits a scaling limit t--+ t/e 2, x--) x/e, 
with random initial data. 

To understand these phenomena, and in particular the role of the 
initial distribution, we have to go back to the physical interpretation of the 
problem; see Ref. 16 for a more detailed explanation. Since the right-hand 
side of Eq. (1.2) is a (discrete) divergence form also including the stochastic 
term, the spin S obviously satisfies a conservation law, and we have a one- 
parameter family of stationary measures/~o, 2 ~ ~. More exactly, ~o is the 
Gibbs state with Hamilton function 

H~ : H ( a )  - ), ~ a ( x )  (1.12) 
xG~- 

at unit temperature; thus, the parameter 2 is just the chemical potential 
associated with the spin. It is easy to check that 

f •H(x, a)~~ = 2, (1.13) 

f a(x) #~ = F'(),) (1.14) 

for all x ~ 2~, where F '  denotes the derivative of the free energy for H ~ F '  is 
a strictly increasing function in our case. 

In such situations the principle of local equilibrium suggests that the 
initial distribution should be specified as a family of local equilibrium states 
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#~,~ with some smooth profile 2: N --, R of the chemical potential. If (1.13) 
remains in force, at least in an asymptotic sense, for positive times with a 
time-dependent profile 2 = 2(4 x), then taking expectations of both sides of 
(1.7), we obtain a limiting equation for the mean spin p, 

Op (t, x) 1 (~22 
~ = ~ y x  ~ (4 x); p(O,x)=F'(,~(O,x)) (1.15) 

Therefore, the diffusion coefficient of (1.10) equals D(p) = 02(4 x)/Op(t, x). 
In view of the correspondence (1.14) between ,i and p, we expect that D 
depends on t and x only trough p; thus, D: R--,(0,  oo) is defined by 
D(v) = l /F'(u)  if v = F'(u). 

In the next section we formulate the main result of this paper, claiming 
that the situation is essentially the same as outlined above. Some exten- 
sions to arbitrary dimensions and to systems with reaction terms and 
driving forces (see Refs. 2 and 5) are to be discussed in a forthcoming 
continuation of this paper. 

2. M A I N  R E S U L T  

We have emphasized that the hydrodynamic limit is very different 
from a lattice approximation procedure. Nevertheless, it will be convenient 
to rescale Eq. (1.2) according to the rules t--,t /e 2 and x ~  Ix~e], and to 

2_  ke2([~). The initial embed the rescaled equations into a functional space [1_ e - 
distributions will be rescaled in the same way, and they will be considered 
as probability measures on the common configuration space k 2. From (1.7) 
we see immediately that (1.2) rescales into 

dS~(t, x) = �89 V'(S~) dt - 1 e 2 7ve A~S~ dt-V,*w~(dt, x) (2.1) 

where V* denotes the formal adjoint of V~, that is, 

Vtq~(x) = (l/e) [~o(x-  ~) - ~0(x)] (2.2) 

The evolution can formally be extended to all locally integrable initial con- 
figurations a ~ ke 2 by the trivial convention S~,(0, x ) =  a~,(x)= L a(x), where 

I , a (x )=l - [k~+~r(y )dy  if [ x / e ] = k  (2.3) 
~ke 

Of course, the time-evolved configurations depend only on the projection 
a~=I~a; they are step functions of class k~, where ~o~ k~ means that 
q): N ~ [R and ~o(x) = O([x/e]) for all x e  N. 
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Under  condi t ion (1.4), Eq. (2.1) lives mos t  happi ly  in a scale of 
w e i g h t e d  1_ 2 spaces with weight functions 0~, r e N, defined as follows. Let 
0: ~ ~ (0, 1] be a nonincreas ing and  twice cont inuously  differentiable 
function such that  O(u) = �89 2 = if u >~ 2, O(u) = 1 if u ~< 1, O(u) >1 e-= if u >t 0, 
and 0~< -O'(u)<~O(u)<~�89 2-~ for all u. We define 0, by 0~(x)=  [0 ( Ix l ) ] "  
for all x e  R and r ~ N  (see Refs. 13 and  14). In t roduce  now fir 2 =  I_2(R) as 
the real Hi lber t  space of locally integrable o: ~ ~ R with n o r m  I'1~ defined 
by 

= f  0r(x) 02{x) dx (2.4) iolr ~ 

The associated scalar p roduc t  will be denoted as ( . , - ) , .  Since 0r(x) <~ O,(x) 
if s < r, we have 1_ 2 c 1_ 2 in this case. Moreover ,  l_2r C I_2(R)C 1_ 2 if r > 0, 
and they are the dual spaces of each other  with respect  to the usual scalar 
product ,  ( ' , - ) 0  of  I_2(R). N o w  we define a conf igurat ion space, l_2e for (2.1) 
as the locally convex space with seminorms  [ ' I t ,  r > 0. This s imply means  
that  

~ = n~(~)= (~ ~ (R)  (2.5) 
r>O 

and o~ ~ o in the (s trong) topo logy  of 1_ 2 iff Ion - ol r ~ 0 for each r > 0. A 
subset  B c l _  2 is bounded  if [ la i r :  aEB] is bounded  for each r > 0 .  The  
dual space ILe 2. of I- 2 is just  

1-2" = [Le2*(~)~-- U l-2~r(l[~) (2 .6)  
r>0 

The elements of 1_ 2. as linear functionals will be denoted as 

q, = ~,0(o) = f ~o(x) o (x )  dx, o e 0_~ (2.7) 

R e m e m b e r  that  1_~* is not  a metric  space; q~n ~ cp in 1_ 2. means  that  there 
exists an r > 0 such that  q~--* ~0 in l_2_r. The  weak topo logy  of l_e 2 is not  
metr izable  either; it is given by a fundamenta l  system of the ne ighborhoods  
of 0 e 1_~, namely  

UT(q) 1, (p2 ..... ~on)-- [ o  ~ ne2: I~0k(o)l < 7, k = 1, 2 ..... n]  (2.8) 

where 7 > 0, n e N, and 2, (0 h ~ 1_ e . A subset B of ~ is called a ball if 

B =  [ o ~  1_2: IOlr ~<br, r > 0 ]  (2.9) 

with some b, < oo. It  is easy to check tha t  l_e 2 is a reflexive space, and every 
ball of 0_2 is weakly compac t  (see Ref. 34). The space of differentiable 2 e l-e z 
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such that 2' is absolutely continuous and 2', 2" also belong to D-e 2 will be 
denoted by H~. If f2 c l_~, then Cb(Q) denotes the set of strongly con- 
tinuous and bounded f :  ~2 ~ R, while Cw(f2) is the space of the weakly 
continuous elements of Cb(~). 

Now we turn to the study of Eq. (2.1). In view of (1.4), the drift of 
(2.1) is linearly bounded and uniformly Lipschitz continuous in any of the 
spaces I_~(N), at least if e > 0  is fixed. Therefore, a standard Picard- 
Lindel6f-type argument yields the existence and uniqueness of strong 
solutions to (2.1) in each D_r 2, (see, e.g., Ref. 4); thus, we have a transition 
semigroup P'~, 

P '~f= P'~f(~) = ~[f(S~(t))lS~(O) = I~r], f e  Cb(0_~) (2.10) 

where S~(t) = S~(t, �9 ). Essentially the same argument shows that P'~ is in fact 
a strongly continuous contraction semigroup in Cb(n_ 2) for each e >0;  its 
generator will be denoted by G~. We are not going to enter into details of 
this construction problem, but the a priori bounds we prove in the next sec- 
tion are much stronger than those one usually needs to derive such 
qualitative results. To find a compact expression for the generator, we need 
a notion of functional (variational) derivatives. 

Def i n i t i on  1. Let ~ c 1_2 be convex and f e  Cb(f2). We say that f 
has a continuous and bounded functional derivative 2~fif we have a map- 
ping Df: N x ~  ~ such that Df:f2-- .  0_~* is a bounded, continuous 
function of a �9 f2, and if 6 = a - if, then for all e, 6 �9 ~2 we have 

f ( a ) - f ( 6 ) = f ~ f 6 ( x ) D f ( x ,  6 + q b ) d x d q  (2.11) 

The space of such f will be denoted by ~b(~),  while D~(g2) is the set of 
f � 9  l)b(~2 ) such that D2f=  • D f =  D2f(x, x', a) is a continuous and boun- 
ded map of f2 into 2, 2, D_ @ D_ e . If ~2 c D_~, then a distinguishing symbol ~ 
will be used. 

Observe now that if 

H~(x, a ) =  V ( ~ ( x ) ) + � 8 9  [ a ( x - e ) - ~ ( x ) ]  2 } (2.12) 

denotes the energy density of a, then the drift of (2.1) equals 
leA~ ~ H ( x ,  .)(x, a); thus, for smooth cylinder functions we have 

G~f(a) = - �89 f emX'~ -H(x' ~)A~D~f(x, cr)](x, or) dx (2.13) 

Let #;.,, denote the Gibbs state on l_~ with interaction H, temperature 1, 
and chemical potential 2~=I~2, )~�9 H~; that is, the conditional density of 
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a(x), given a(y) for [y/e] r Ix~e], is proportional to 
exp[ - H(x, a) + 2=(x) ~(x)] for all x e N and a s L=. It is easy to check that 
2 e O_ 2 implies #;.,=({= n D_~) = 1. Integrating G~f  by parts, we obtain a fun- 
damental identity 

f (;=f(a)#;.,~(da):lff (A=2(x)) ~ f ( x ,  a) dx#;.,~(da) (2.14) 

On the other hand, if g~ Cw(0_2), then the law of large numbers implies 

f g(a) #~.,=(da)= g(F'(2)) (2.15) lim 
~ 0  

where F'(2)(x)= F'(2(x)) [cf. (1.14)]. Similarly, if f admits a weakly con- 
tinuous functional derivative, then 

f G=f(a)  #;..~(da) = �89 2"(x) •f(x, F'(2)) dx (2.16) lim 
s  

Of course, (2.15) needs a proof. There is nothing to prove if v=0 ;  in the 
general case (2.15) reduces to 

f [(p(a) - (p(F'(2)] 2 #;.,~(da) = 0 (2.17) lira 
e ~ 0  

for smooth ~0 e L~ 2.. Unfortunately, I have not found any explicit reference 
concerning this weak law of large numbers, but the principles are well 
known (see Refs. 7, 18, and 22). Another method is to combine an 
associated stochastic dynamics (3~1 with the Feynman-Kac formula to con- 
clude (2.17); this question will be discussed elsewhere. 

T h e o r e m  2. There exists an c%>0 such that if c~<c~ o, 2 ~ H  2, 
g e  D~(0_~), and the initial configuration of (2.1) is distributed by #x,,, then 

limfg(~)#a=(da)=~(2 ) for 2 ~ H  2 (2.18) 
e ~ 0  

with some g e Cb(H 2) implies for t > 0 that 

f P'= g(a)/~;.,~(dcr) = ~(2(t)) (2.19) lira 
e ~ 0  

where 2( t )=2( t ,  x) denotes the solution to F"(2)C32/~t=�89 2 with 
initial condition 2(0)= 2. 
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Remark 1. If geC~(fl_2), then (2.18) reduces to (2.15) with ~(2)= 
g(F'(2)). In particular, if g ( a ) =  h(q~(a)), q)e ~_~*, then (2.19) implies that 
S~.(t, q)) --, ~ ~o(x) p(t, x) dx in probability as ~ ~ 0, where p solves (1.10) 
with p(0, x) = f ' (2(x)) .  

Remark 2. The symmetric zero-range model is very similar to our 
Ginzburg-Landau model, at least if v = 0. Rost (3~ obtained a strong form 
of the principle of local equilibrium in that case. 

Remark 3. The restriction that c~ ~< % seems to be technical; it is due 
to a brutal perturbation method we are using to derive some parabolic 
estimates that do not depend on the smoothness properties of the coef- 
ficients. Fabes (H) has pointed out that this restriction can certainly be 
removed. Another method was proposed by Guo et al. ~2~ 

The proof of the theorem is based on an adaptation of the resolvent 
equation method of Refs. 19, 24, and 25 to the present situation, (see also 
Refs. 15 and 16). This extremely flexible technique reduces the proof of 
(2.19) to the verification of certain smoothness properties of the evolution 
as a function of the initial configuration. The related, merely qualitative 
analysis of the microscopic dynamics exploits the parabolic structure of the 
model to be exposed in the next section. Although the resolvent techniques 
seem to be applicable to all models we have in mind, the necessary 
smoothness properties of the dynamics fail to hold even for the simplest 
hyperbolic systems, such as the harmonic crystals. Therefore, if we want to 
understand something about an anharmonic crystal by means of similar 
methods, we are presumably forced again to introduce some small noise 
and damping to smoothen the dynamics. 

3. THE PARABOLIC S T R U C T U R E  

The basic idea of the proof is very simple. Consider the resolvent 

f~(~r) = e ztPt~g(~r) dt, z > 0  (3.1) 

Then g=z f~ -G~f~ ,  whence, by (2.14) 

f g(a) d#~,~=z f f~(a)d/~,~ 

- �89 f f  (A~,~(x)) D~f~(x, a) dx clg;.,~ (3.2) 
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We shall show that both f~ and D f= are uniformly bounded and weakly 
equicontinuous on the balls of k~; thus, we can pass to 

~(2) = zf(F'(2)) - �89 f 2"(x) Df(x, F ' (2))  dx (3.3) 

along the very same subsequence for all 2 e H 2. Observe now that (3.3) is 
just the resolvent equation for the limiting equation F ' ( 2 )  02/~t = �89 02)~/C~X 2. 
It is easy to verify that F ' >  0 is bounded and it is bounded away from 
zero; consequently, (3.3) has a unique solution, and 

f (F'(2))  = e =' ~(2(t, .  )) dt (3.4) 

This means that l~;..~(f=)~f(F'(2)) for all subsequences; thus, the proof 
can be completed by showing that #;.,=(P'~ g) is an equicontinuous function 
of time. 

The a priori bounds we need all reduce to the study of the fundamen- 
tal solution p~ of some parabolic equations of the type 

0u 
Ot (t, y )= G=u(t, y) (3.5) 

G~u(t, y )= �89 y)u(t, y ) ) -  �89 y) (3.6) 

where a(t, .)E 1_~ and ] l - a ( t , y ) ]  <~c~ for all t ~>0 and y e  N. Then P a=  
pa(s,x; t, y) is defined for O<<.s<<.t and x, y e n  as the solution to (2.5) 
with boundary condition p~(s,x; s, y )= l/e if [x/e]=[y/e] ,  and 
pa(S, X; S, y ) = 0  otherwise. Observe now that if f= and g are related by 
(3.1), then 

where S~ is the solution to (2.1) with initial condition S~(0)= Ira, while 

a(t, y)= V"(S=(t, y)) (3.8) 

That is why we are interested in some properties of Pa; the only infor- 
mation we have on a is l1 - a l  ~ cc 

In view of the correspondence between ve  k b and u=V~v, the study of 
Ga can partly be reduced to that of L~, 

L=v = - �89 1 2 2 -~v~ d~v (3.9) 
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L e m m a  1. There exists a constant z0 > 0 depending only on ~, such 
that if ~?v/~t = Lay + V*h with some h(t) e a_2e for t ~> s, then 

�89 7 e-Z'lV~v(t)l~dt 

;7 <~ e-Z'lv(s)l~ + Zo e ~'lh(t)ty dt 

for all s>~O, z>>.z o, Irl ~< 1, and 0<e~< 1. 

Proof. It is sufficient to show that 

2 ( v ,  Lav)r q- 2<v, V*h )r ~- I (  1 --  0{)IV;V[~ 

~< z0 I<~ + Zo Ihl~ (3,t0) 

Since V* is the adjoint of V~ in L2(~) and -A~=V*V~, 

2(v ,L .v>~= - f  (VeOrt))aVst)dy--g.  2 f (A~Orv)A.vdy 

<D, r*h )r= f (VeOrv)h dy 

On the other hand, 

V~Orv = OrV~V + (V~0r) T~v 

AgOrV ~- OrZJsD "J- (1/C,)(VgOr) T~v + (1/g)(V*Or) T*u 

where T, cp(x) = qo(x + e) and T*q~(x) = q)(x - e); consequently, 

2(v, L.v)~  + 2(v, V*h )r-[- (1 - -  O{)lV, vly + (1 -- C~)~ =IJ~vJ 

~< (1 + c~) ; IV~0r I I T~vl(lV~vl + Ih[) dy + 2<V~v, h) r  

+ (1 +c~)e f ([V~0r[ IT~vl + IV*0rl JT*vl)IA~vl dy 

Taking into account that I Or(X)l <<. OrfX) and O~(x)<~ e jrl Or(y) if I x -  y[ ~< l, 
the statement follows by an easy application of an elementary inequality, 
UV <~ CU2/2 + V2/2C if c > O. | 

In the rest of the paper the constant of Lemma 1 will be denoted by Zo 
and r �9 [ - 1, 1 ] will be assumed. 

822/47/3-4-18 
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L e m m a  2. There exists a constant M, depending only on c~, such 
that for alls>~0, z~>%,e~<l ,  a n d 0 < r ~ < l  we have 

;7 f e ~' Ip.(s, x; t, y)12Or(y) dy dt 

M <.-~l e ZSOr(X ) 

,Drool Because of the symmetry of the problem, we may and do 
assume that x>~0 and r > 0 .  Define vx(t)=v~(t, y) as the solution to 
Ov/Ot=L,,v with vx(s, y ) = 0  if [y/e]<... [x/e], and v~(s, y ) = l  otherwise; 
then V~vx(t, y) = p~(x, s; t, y) if t >~ s; thus, taking the Laplace transform of 
both sides of (3.10) with h = 0  and z>~zo, we obtain the statement. | 

In the one-dimensional case we are considering it is quite easy to 
define a bounded inverse of V~. Indeed, let K~" []-e 2 ~ k~ n ~_~ be defined by 

K~u(y) = u(x) dx if k = [ y / e ] > ~ O  

(3.11) 

fi K~u(y)= u(x) dx if k=[y/e]<<.O 
8 

It is plain that K~u(O)= 0 and V~K~u = I~u. Since K~. is uniformly compact 
in k~, the solutions to (2.1) turn out to be weakly continuous functions of 
the initial data. That  is why, instead of one of the more familiar spaces D_ 2, 
we have to work with a full scale of spaces. This technical difficulty can be 
avoided by considering the problem in a bounded domain only (see Refs. 
20 and 30). 

k e m m a  3. For  each f l>0 ,  r ~ ( 0 , 1 ] ,  and for each ball B of k 2 we 
have a 7 > 0  and some (Pl, q)2 ..... q)ne k~* such that for all s~>0 and z>~zo 
we have 

f~ f 6(x) pu(s,x;t ,y) Or(y) dydt<.Gfle -z" 

whenever 6 e B c~ U./(q~l, q02 ..... (p,,). 

Proof. Define va=va(t) for t>~s as the solution to cgv/~Vt=L~v with 
initial condition %(s)=K~6. In view of Lemma 1 and the Schwartz 
inequality, we have to estimate IK~6lr. Observe that 

Ig~61r2 = I ~ ( Y )  6(Y) dy (3.12) 
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where ~oa =K*(OrK~6) and K* denotes the adjoint of K~ in [~. An easy 
calculation yields 

I<alr<~Mlalr/z, IK*4,1 r /2~  M ]~/r r (3.13) 
r r 

where M is a universal constant; consequently 

[(Pal-r/2 ~< (M/r) 2 lal r/2 (3.14) 

On the other hand, V*~o a = I~Or&a; therefore 

IVy+ ~al  r <~ (M/r)[al,/z (3.15) 

Consider now the set Kr(B  ) c D_ 2.,  

Kr(B)= ~)[O~_~',~b ' r+]V*tp, r ~ < M ( l + M )  br/2] (3.16) 
e > 0  

where br = s U p  I~]r  for 6 e B, and notice that q0a e Kr(B) if 6 ~ B. Moreover, 
(3.14) and (3.15) imply the compactness criterion of F. Riesz; thus, Kr(B ) is 
precompact in the strong topology of L2(~), and hence also in [L2r/2(~). 
Indeed, let ~)e Kr(B) and estimate r0] 2_~/2 separately in the interval [ -  2n/r, 
2n/r] and outside of this interval; we obtain 

2 -'~ e" [@l._r/2,,< f tfl2 dy + 5e-"lOl2~<~ Cr(B) ~b2 dy) (3.17) 

Therefore, for each y > 0 we can select a finite sequence (p~, ~0 2 ..... q0,, from 
Kr(B) in such a way that I fPa-q) , l - r /2<7 for each 6eB with some 
k =  1, 2,..., n. IfaeBnUT(fp~,...,cp,,) , then 

f ~p~(y) 6(y)dy <~ f [~Pa(Y)-~k(Y)l I~(y)l dy+ Iq~k(6)l 

~< 7(1 + br/2) 

which completes the proof. | 

This result is sufficient to prove the equicontinuity of f t .  

4. T H E  P E R T U R B A T I O N  T E C H N I Q U E  

To estimate a difference like Dry(x, ~r)- ~)f~(x, 6), we have to compare 
two equations of type (3.5) with different coefficients a and ~. We shall 
make use of the backward equation 

8u/~?s + G*u + h = 0  (4.1) 

C*~u(s, x) = ~a(s, x) ~u ( s ,  x ) - i  2 2 ~ve A~u(s, x) (4.2) 
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where s/> 0, x e R, and h: N2 __, R, N2+ = [0, oo) x R. Since Pa satisfies (4.1) 
with h = 0, 

Pa h(s, x) = p,(s, x; t, y) h(t, y) dy dt 

solves (4.1) with boundary condition u ( T , ' ) =  0. Define Ra,a by 

R,,au(s, x )= �89 x ) -  6(s, x)]  A~u(s, x) 

Then (4.3) implies an identity, 

T T T T PaRu.aPah P,h - Pah = 

(4.3) 

(4.4) 

(4.5) 

Since the right-hand side of (4.5) is a product of three factors, [L2-estimates 
T T. are not sufficient to bound P ,  - P a ,  we also need bounds for some powers 

q > 2. We have no information on the smoothness of a; thus, we are forced 
to use the simplest perturbation method, a Neumann expansion. We follow 
Chapter 9 and the Appendix of Ref. 33. 

Suppose that 6 =  1; the corresponding objects will be denoted by Pl 
and pr .  Of course, pl(S, X; t, y ) = p ~ ( t - s ,  y - x ) ,  

1 j~)/,](t/e2) p,(t, y)=-~ 

J(n~)(t) = - -  exp[ --ik~(~o)] cos no) de) 

(4.6) 

where 

k~(co) = (1 - c o s  co)[1 + ve2(1 - c o s  co)] 

We shall consider p r as a small perturbation to P~. 

k e r n m a  4. I f l ~ < q < o o ,  thenfo r  t > O a n d e > O  

f lpAt, y)l q dy <~ Cqt {1 --q)/2 

where Cq depends only on q. 

Proof. The Hausdorff-Young inequality implies that if q~>2 and 
q' = q/(q - 1 ), then 

T n =  - - o o  
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Since ks(~)>~o)2/5 and we can multiply both sides by e~-q, this proves 
Lemma 4 for q ~> 2. 

On the other hand, p~(t, .)=p~(t/2, .) �9 p~(t/2, .); thus, rp~(t, y)| ~< 
C'~ t 1/2 for all y, which completes the proof. II 

k e m m a  5. For each q e (1, oo) we have a constant  (~q > 0 such that 
~q is strictly positive in the interior of (1, oo), and for all ~<0Zq and 
0 < e  ~< 1, h: A2+ --, ~, 

IR.,1P? hlq+ ~<(1-~q)lhtq + 

where [" Iq+ denotes the usual norm of l_q(N2+). 

ProoL We have to show that 

IA~P~hlq+ <~ Cq]hlq+ (4.7) 

where Cq is bounded in the interior of (1, oo). Since A~p~(t, y) has a boun- 
ded Fourier transform, the case of q = 2  is a direct consequence of the 
Plancherel equality. Following the proof of Theorem A.1.6 of Ref. 33, we 
see that the case of q > 2 reduces to 

( ,  (, 
sup sup | j [A~p~.(t-s, y-x)-A~.p~.(t, y)l dydt< +oo (4.8) 
6>0 (s,.v)~Q a OQ16 

where 

Q6 = [(S, X): 0 ~ S < 6  2, IX I ~ ' ~ ]  

and Q ; =  ~2~\Q2a. Since A~P~ is symmetric, for q < 2  a simple duality 
argument can be used. The proof of (4.8) is a question of some explicit 
calculations [cf. (4.6)]. 

The integral of (4.8) will be split into five parts. Integrating by parts 
and using ~o2/5 ~< 1 - cos (o ~ 0)2/2, we see that 

IA~p~(t, y)[ ~< Ct-1/2(1 + y2)-1 (4.9) 

which yields a uniform bound for the integral of (4.8) over t<462  and 
l Y] >/" 2& Similarly, we have 

~tA~p~(t, y) <~ Ct-3/2min[~, (l + y2) -'1 (4.10) 

IV~A~p~(t' y)I <<'CminI~ (1+ 

<.% Ct-5/4(1 + y2)-3/4 (4.11) 
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Thus, estimating A ~ p ~ ( t - s , y - x ) - A ~ p ~ ( t , y - x )  and A ~ p ~ ( t , y - x ) -  
A~p~(t, y) separately for lyl ~<2~ and for lyl >26,  we obtain (4.8) for the 
whole domain of integration, which completes the proof of Lemma 5. | 

As a consequence, the operator 

(I-R~,IP'() -1-= ~ (R,,,IPT) n 
n = O  

makes sense, and it is bounded in each [Lq(~ 2);  moreover, 

T _ _  T T - - 1  P, ,h - P~ ( I - Ra ,  IP1) h (4.12) 

Taking into account Lemma 2, we also obtain an L] bound for Po" 

L o m m a  6. Let ~o = min @ for p E (3/2, 2] and suppose that ~ ~ ~o, 
Z>Zo, 2 ~ q < 3 , 0 < s ~ < l ,  a n d 0 < r ~ r q ; t h e n  

e =' Ip~(s,x;t,y)lqO~(y)dydt<<.Cq(r,z)e-~'O~(x) 

for all s >~ 0 and x ~ R, where rq > 0 and Cq(r, z) < oo depend only on q and 
q, r, z, respectively. 

ProoL Lemma 4, Lemma 5, and the Young inequality imply that 

f f  f p~(s,x; t, y)h(t, y)dydt<Cl(T-s)71htp+ (4.13) 

for all s>~0 and x e  R with some 7 > - 1  and C~ < +oo depending only on 
c~ o and p, provided that p > 3 / 2 .  Multiplying both sides by 
(z - Zo) exp(zo T -  zT) and integrating for T >  s, we obtain 

fs ~ exp(zot-Zt)  f p~(s,x;t, y) h(t, y) dydt 

~< C2 exp(zos - zs)[hi p+ (4.14) 

where z > Zo and C2 depends also on z. Let I,,x(r, z, q) denote the left-hand 
side of the inequality we have to prove, and consider a function h: R2+ ~ R 
defined for t >~ s by 

]h(t, Y)I = e x p ( - z o  t) lp~(s, x; t, y)[q/P Or(y ) 
(4.15) 

sign h(t, y) = sign p~(s, x; t, y) 

while h ( t , y ) = O i f t < s .  Heresy>0,  xe[R, p > 3 / 2 ,  q>~2, and0~<r~<l  are 
arbitrary parameters. Substituting h into (4.14), we obtain that 

[,.,x(r,z, l +q/p)<<. C2exp(zos-Zs)[I~.fipr, pzo, q)] lip (4.16) 



Hydrodynamic Limit of 1D GL Lattice Model 567 

Consequently, Lemma 2 implies the statement for q < 7/3 and r ~< 2/3. Since 
the sequence q . + ~ =  1 +2q. /3 ,  qo=2 ,  converges to 3, iterating this 
argument as many times as necessary, we obtain the statement for all q < 3 
with some rq>O. | 

Now we are in a position to complete the proof. 

5. P R O O F  OF T H E  T H E O R E M  

We follow the resolvent approach as outlined at the beginning of 
Section 3. Since g is bounded, so is f~, while a uniform k2*-bound of D~f~: 
follows from (3.7) by Lemma 2. Comparing Lemma 3 and (3.7) with the 
definition of D~f~, we see also that f~ is uniformly equicontinuous in the 
weak topology of each ball B of k~, at least if z > z 0. The proof of the 
equicontinuity of D~f~. is a little bit more involved. Introduce the operators 
Pa, 

P.h=P.h(s,x)=I~176 y)h(t ,  y ) d y d t  (5.1) 

for z > z0, an associated system of Hilbert norms If []r._- is defined by 

= I f  f ih(,, ytp or(y)dy d, (5.2t 

Let a = a(t, y) = V"(S~(t, y)), gl = g(t, y) = V"(S~(t, y)), h(t, y) = 
D~g(y,S~(t)), and h(t, y )=~)~g(y ,  S~(t)), where S~ and S~. denote the 
solutions to (2.1) with initial configurations I~a and I ~ ,  respectively; then 

= ~_Pah(O, x) - EPah(0, x) 

= EP~(h - h)(O, x) + E(Pa - Pa) h(0, x) (5.3) 

h(t, y ) -  h(t, y) 

=fo ~ I [ S * ( t ' Y ' ) - X ' ( t ' Y ' ) ] ~ ) 2 g ( Y ' Y " S ~ ) ( t ) ) d y ' d q  (5.4) 

y ' )=  f cS(x) pa(O , x; t, y') dx (5.5) S~.(t, y ' ) -  S~(t, 
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where 

S~q)(t)=qS~(t)+(1-q)S=(t), 6 = a - 6  

a(t, y ) =  [V'(S~(t, y ) ) -  V'(S=(t, y)][S~(t, y ) -  S,(t, y) ]  1 (5.6) 

On the other hand, if ~?v/Ot = LaY + �89  d)p~ with initial condition 
v(0) = 0, then Lemmas 1, 2, and 6 imply 

II po(0, x; . ,  -) - p~(0, x;. ,  ')11~,: 

M LI ( a -  a) po(0, x; ', ")tl r,: 

% M[Jl(a- a)Sltr,~]l/m[[[pa(O, X; ", ")5/4Hr,z]2/5 

<~ MI Or(X)( II&- & II r,z) 1/10 (5.7) 

provided that z > z o and 0 < r ~ rs/z. Since IJS= - S~ II r,z can be estimated by 
Lemma 3, we see that ~=f= is a uniformly equicontinuous map of each ball 
B of 1_~ into I_~*. Lemma 2 implies also that the image of each B is compact 

2. in the weak topology of 1_ e . As a consequence, for each increasing 
sequence B= of balls of [1_2 we can select a subsequence em ~ 0 in such a way 
that both f~ and lkf= converge uniformly on each Bn along this sequence. If 
z > z o, then Lemma 2 yields a bound even for 8DSJ@; consequently, our 
subsequence can be selected independently of z > Zo. Finally, if f denotes 
the limit point of f=, then ~,f= must converge to 13f, and f e  13b(f2 ) with 
O= U B,,. 

In order to pass to the limiting resolvent equation (3.3), we need some 
information on the initial distributions/~.,=, which can be derived, e.g., by 
means of the auxiliary process (~=(t) = cot(t, y) defined by 

&o=(t, y) = �89 - V'(co~)] dt + �89 dt + w~(dt, y) 

co40, y) ~ 1_= n I_~ (5.8) 

where 2, = I~2. It is easy to check that ~.~ is a stationary measure of the 
diffusion process defined by (5.8) in 1_~ (see Ref. 31). Following the proof of 
Lemma 1, but using IV~0~I ~< rOr, we obtain that 

8 ~lo=(t)l~ + ICO~(t)lrZ ~ M --c~t (}__~c~ rM) ( ! +  121~) (5.9) 

Therefore, if 0 < r ~< (1 - ~)/4M, then 

~< 4M (1 + 1212) (5.10) 
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Let aS~ denote the solution to (5.8) with 2~ in place of 2~ and set 6~(t, y) = 
[c%(t, y ) - (b~( t ,  y)]2; an elementary calculation yields 

a-6 (t, y) +--T- a (t, y) Ot 

1 V 
<~ ~ [2,(Y)--  ~(Y)]2  +-~ e2J~6~( t, Y) (5.11) 

By means of a compactness argument,  it is possible to show that there is a 
joint distribution #x,,:,~ for co~(0) and 03,(0) such that #~,;,~ is a stationary 
state of the coupled process, and its marginals are just #;.,~ and #z~; 
consequently 

1 
(1 - e) d;.,7.,~(y) ~ 1 - ~ [2~(y) - ~ ( y ) ] 2  + ve2Aja~.~(y) 

d; , ; , , (y)=f f  [I~a(y)-I~6(y)]Z#;.,~,~(dcr, d~) (5.12) 

for all y . Observe that (5.12) is an inequality of type u m <~ l) m +qum_ L+ 
qum + 1, m �9 Z, with q = v/(2v + 1 - c~) < 1/2, which can be solved explicitly 
by iteration. We obtain that 

um ~< q" 
n = 0  k 0 -k Um n+2k~ 

m e Z  

provided that um and vm increase more slowly than exponentially. This 
means that if v goes to zero in a dominated way, then so does u for each 
m e Z. In particular, if ] .~(y)= 2(x) for all y, then we obtain that 

!im f = (5.13) 

for each x, and a similar statement follows for the second moments as well 
as for the correlations. Since 

qn i (;)e2ik~o_ino - 1 (5.14) 
~=o k=O 1--2qcOs CO 

fairly explicit estimates are available on the local equilibrium behavior of 
#~,~. Finally, we apply the one-dimensional version of the stochastic 
dynamics (5.8) to the one-dimensional conditional distributions of #;.,~; do) 
is given by (5.8) if [y/e] = Ix/el  and & o = 0  otherwise; we see that (5.12) 
turns into Dobrushin 's  uniqueness condition. Therefore, #;,,~ obeys an 
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exponential decay of correlations implying the law of large numbers (see 
Ref. 22). 

In view of (5.10), we can choose a sequence of balls Bn in such a way 
that for each ball B' and ? < 1 we have an n o < oo such that laa~(B,) > 7 if 
n > no and 2 ~ B'. On the other hand, the law of large numbers mentioned 
above implies (2.15) and (2.16); thus, we can really pass to (3.3). Since F" 
is a smooth and bounded function, and it is bounded away from zero, (3.3) 
has a unique solution in Db(s s = U B~; consequently 

lira [co e-~'Pt~g(a)la;.,~(da) = e-Z'g,(2(t)) dt 
F.~O Jo 

for z > z 0, where 2F"(2) 02/0t = ~ 2 2 / ~ x 2  with ,~(0) = 2. Finally since 

(5.15) 

( ' t + s  

t + s  t J P~ g-- P~g= G~Pqg dq 
t 

Lemma 2 implies that/~x,~(P'~g) is an equicontinuous function of time. This 
means that (5.15) is possible only if/~.,~(P'~g) conwerges to ~(2(t)), which 
completes the proof of the theorem. I 

This proof is much more general than it seems to be. 
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